Part Number Hot Search : 
H838023S 1033A 7C1021 LL411 74HC1G TC0306A RPGFC004 TC0306A
Product Description
Full Text Search
 

To Download V23990-P768-A-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  V23990-P768-A-PM flow pim 2 3rd 1200v/50a 3~rectifier,brc,inverter, ntc very compact housing, easy to route igbt4/ emcon4 technology for low saturation losses and improved emc behavior motor drives power generation V23990-P768-A-PM tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 80 t c =80c 80 t h =80c 95 t c =80c 144 maximum junction temperature t j max 150 c inverter igbt t h =80c 60 t c =80c 75 t h =80c 163 t c =80c 247 t sc t j 150c 10 s v cc v ge =15v 900 v 1200 20 w a collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c features flow 2 housing target applications schematic forward current per diode surge forward current 700 p tot power dissipation per diode i 2 t 2450 t j =25c t j =t j max a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current a v c v maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gate-emitter peak voltage t j =t j max t j =t j max t p limited by t j max t p =10ms a w input rectifier diode 150 175
V23990-P768-A-PM tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 60 t c =80c 80 t h =80c 114 t c =80c 173 brake igbt t h =80c 44 t c =80c 45 t h =80c 130 t c =80c 198 t sc t j 150c 10 s v cc v ge =15v 900 v brake inverse diode t h =80c 10 t c =80c 10 t h =80c 50 t c =80c 75 brake fwd t h =80c 25 t c =80c 25 t h =80c 75 t c =80c 114 thermal properties t j max brake inverse diode t j =t j max c v 1200 20 w a maximum junction temperature t j max 175 v rrm dc forward current p tot maximum junction temperature short circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage v a v v c peak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max v ge i f t j =t j max c v a v rrm w a w t j =t j max t j =t j max t p limited by t j max 50 1200 175 dc forward current i f repetitive peak forward current i frm p tot v ce i cpuls t j =t j max i c repetitive peak forward current maximum junction temperature i frm t j max v rrm peak repetitive reverse voltage t j =t j max w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f peak repetitive reverse voltage c maximum junction temperature t j max 175 -40+tjmax-25 c storage temperature t stg -40+125 c t op operation temperature under switching condition 175 power dissipation per diode p tot 105 t p limited by t j max t p limited by t j max 100 1200 20 1200 copyright vincotech 2 revision: 3
V23990-P768-A-PM tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition insulation properties v is t=1min 4000 v dc min 12,7 mm min 12,7 mm clearance insulation voltage creepage distance copyright vincotech 3 revision: 3
V23990-P768-A-PM parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,1 1,7 tj=125c 1,05 tj=25c 0,89 tj=125c 0,78 tj=25c 0,004 tj=125c 0,006 tj=25c 0,05 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 0,74 thermal resistance chip to case per chip r thjc 0,49 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,86 2,3 tj=150c 2,3 tj=25c 0,02 tj=150c tj=25c 200 tj=150c tj=25c 104 tj=150c 100 tj=25c 19 tj=150c 23,8 tj=25c 220 tj=150c 295 tj=25c 78 tj=150c 118 tj=25c 2,86 tj=150c 4,5 tj=25c 2,69 tj=150c 4,48 thermal resistance chip to heatsink per chip r thjh 0,58 thermal resistance chip to case per chip r thjc 0,38 coupled thermal resistance transistor-transistor r thjht-t 0,1 coupled thermal resistance diode-transistor r thjhd-t 0,13 tj=25c 1,75 2,2 tj=150c 1,71 tj=25c 65 tj=150c 82 tj=25c 162 tj=150c 313 tj=25c 4,62 tj=150c 9,95 di(rec)max tj=25c 2298 /dt tj=150c 1106 tj=25c 1,92 tj=150c 3,98 thermal resistance chip to heatsink per chip r thjh 0,83 thermal resistance chip to case per chip r thjc 0,55 coupled thermal resistance diode-diode r thjhd-d coupled thermal resistance transistor-diode r thjht-d 0,12 a/s ma v na 960 600 0 15 20 15 v ce =v ge 0 reverse recovery time i rrm reverse recovered energy erec peak reverse recovery current peak rate of fall of recovery current reverse recovered charge 50 50 v f 15 q rr t rr 160 rgon=8 tj=25c i nput capacitance output capacitance reverse transfer capacitance diode forward voltage gate charge q gate c oss r gint i ges t f e on v ge(th) gate-emitter leakage current integrated gate resistor inverter igbt gate emitter threshold voltage value characteristic values forward voltage t hreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode conditions i r k/w v v ma t hermal grease thickness 50m = 0,61 w/mk r everse current nc ns 2770 205 290 e off 25 0 rgoff=8 15 c ies f=1mhz turn-off energy loss per pulse inverter fwd c rss t r t d(off) t d(on) v ce(sat) i ces collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time 50 50 0,0017 600 1200 50 1500 rgon=8 thermal grease t hickness 50m = 0,61 w/mk t hermal grease thickness 50m = 0,61 w/mk t j=25c 4 c k /w k/w pf ns mws a v v mws copyright vincotech 4 revision: 3
V23990-P768-A-PM parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value characteristic values conditions tj=25c 5 5,8 6,5 tj=150c tj=25c 1,91 2,3 tj=150c 2,37 tj=25c 0,25 tj=150c tj=25c 200 tj=150c tj=25c 92 tj=150c 84 tj=25c 21 tj=150c 24 tj=25c 182 tj=150c 253 tj=25c 76 tj=150c 116 tj=25c 1,86 tj=150c 2,64 tj=25c 1,78 tj=150c 2,95 thermal resistance chip to heatsink per chip r thjh 0,73 thermal resistance chip to case per chip r thjc 0,48 tj=25c 1,1 1,89 2,1 tj=150c 1,8 thermal resistance chip to heatsink per chip r thjh 1,86 k/w thermal resistance chip to case per chip r thjc 1,23 k/w tj=25c 1,9 2,2 tj=150c 1,88 tj=25c 10 tj=150c tj=25c 27,41 tj=150c 41,04 tj=25c 300 tj=150c 322 tj=25c 2,68 tj=150c 5,19 di(rec)max tj=25c 254 /dt tj=150c 259 tj=25c 2,68 tj=150c 5,19 thermal resistance chip to heatsink per chip r thjh 1,24 thermal resistance chip to case per chip r thjc 0,82 v v k/w pf 210 4000 35 35 0,0012 turn-off energy loss per pulse input capacitance output capacitance c rss c ies e off rise time turn-off delay time t d(off) t f fall time diode forward voltage v f reverse transfer capacitance q gate brake inverse diode t r gate charge c oss 0 reverse recovery energy v f i r t rr q rr e rec reverse recovery time peak rate of fall of recovery current peak reverse recovery current reverse recovered charge turn-on energy loss per pulse e on v 200 k/w nc r gint t d(on) integrated gate resistor i ces i ges collector-emitter cut-off incl diode gate-emitter leakage current gate emitter threshold voltage 2,9 mws c v a n s a/s a 20 %/k b-value b (25/100) k power dissipation given epcos-typ p mw tol. 3% tol. 5% deviation of r100 d r/r r100=1486.1 rated resistance r 25 k f=1mhz t hermal grease thickness 50m = 0,61 w/mk t hermal grease thickness 50m = 0,61 w/mk brake igbt rgon=16 rgoff=16 v ge(th) collector-emitter saturation voltage v ce(sat) turn-on delay time mws v ce =v ge 15 0 15 15 ns 155 0 n one ma na tj=25c tj=25c i rrm 15 600 35 15 35 rgon=16 diode forward voltage r everse leakage current brake fwd t hermistor thermal grease t hickness 50m = 0,61 w/mk 1 200 600 600 25 10 25 960 tj=25c tj=25c tc=100c tj=25c 1950 20,9 22 23,1 115 copyright vincotech 5 revision: 3
V23990-P768-A-PM figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as ic = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 25 50 75 100 125 150 0 0,5 1 1,5 2 2,5 3v f (v) i f (a) tj = 25c tj = tj max -25c 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 6 revision: 3
V23990-P768-A-PM figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 7 o utput inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a output inverter e on e off e on: e off 0 2 4 6 8 10 0 20 40 60 80 100 i c (a) e (mws) e off e on e on e off 0 2 4 6 8 10 0 8 16 24 32 40 r g ( w ) e (mws) e rec e rec 0 1,5 3 4,5 6 0 20 40 60 80 100 i c (a) e (mws) e rec e rec 0 1 2 3 4 0 8 16 24 32 40 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 7 r evision: 3
V23990-P768-A-PM figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter t doff t f t don t r 0,001 0,01 0,1 1 0 20 40 60 80 100 i c (a) t ( m s) t rr t rr 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t rr 0 0,1 0,2 0,3 0,4 0,5 0 20 40 60 80 100 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 8 r evision: 3
V23990-P768-A-PM figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(ic) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(ic) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter i rrm i rrm 0 30 60 90 120 150 0 8 16 24 32 40 r gon ( w ww w ) irr m (a) q rr q rr 0 2 4 6 8 10 12 0 8 16 24 32 40 r gon ( w ) q rr ( m c) i rrm i rrm 0 20 40 60 80 100 0 20 40 60 80 100 i c (a) irr m (a) q rr q rr 0 3 6 9 12 15 0 20 40 60 80 100 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 9 r evision: 3
V23990-P768-A-PM figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(tp) z thjh = f(tp) at at d = tp / t d = tp / t r thjh = 0,583 k/w r thjh = 0,68 k/w r thjh = 0,83 k/w r thjh = 0,83 k/w single device heated ali devices heated single device heated ali devices heated igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) r (c/w) tau (s) r (c/w) 0,07 2,1e+00 0,17 0,02 9,7e+00 0,02 0,13 2,4e-01 0,13 0,08 1,1e+00 0,08 0,27 5,1e-02 0,27 0,22 1,3e-01 0,22 0,08 1,2e-02 0,08 0,39 2,5e-02 0,39 0,04 8,6e-04 0,04 0,07 2,0e-03 0,07 0,05 2,9e-04 0,05 output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 di 0 /dt di rec /dt 0 1500 3000 4500 6000 7500 9000 0 8 16 24 32 40 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt 0 1000 2000 3000 4000 0 20 40 60 80 100 i c (a) di rec / dt (a/ m s) 25 / 150 25 / 150 copyright vincotech 1 0 revision: 3
V23990-P768-A-PM figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 250 300 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 11 revision: 3
V23990-P768-A-PM figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(qg) at at d = single pulse i c = 50 a th = 80 oc v ge = 15 v tj = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100m s dc 10 0 10 3 10us 0 2,5 5 7,5 10 12,5 15 17,5 0 40 80 120 160 200 240 280 qg (nc) v ge (v) 240v 960v copyright vincotech 12 revision: 3
V23990-P768-A-PM figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 15 30 45 60 75 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) tj = 25c tj = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 3
V23990-P768-A-PM figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 16 figure 7 b rake igbt figure 8 brake igbt typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a brake e rec e rec 0 0,5 1 1,5 2 2,5 3 3,5 0 15 30 45 60 75 i c (a) e (mws) e rec e rec 0 0,5 1 1,5 2 2,5 0 15 30 45 60 75 r g ( w ww w ) e (mws) e off e on e on e off 0 1 2 3 4 5 6 0 15 30 45 60 75 i c (a) e (mws) e off e on e on e off 0 1 2 3 4 5 6 7 0 15 30 45 60 75 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 1 4 revision: 3
V23990-P768-A-PM figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16,015 i c = 35 a r goff = 16,015 figure 11 b rake igbt figure 12 brake igbt igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,73 k/w r thjh = 1,24 k/w brake t doff t f t don t r 0,001 0,01 0,1 1 0 15 30 45 60 75 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 15 30 45 60 75 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 copyright vincotech 15 revision: 3
V23990-P768-A-PM figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i c (a) 0 25 50 75 100 125 150 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 3
V23990-P768-A-PM figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 1,86 k/w figure 3 b rake inverse diode figure 4 brake inverse diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake inverse diode 0 5 10 15 20 25 30 0 1 2 3 4 v f (v) i f (a) tj = 25c tj = tj max -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 revision: 3
V23990-P768-A-PM figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 0,74 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 25 50 75 100 125 150 0 0,5 1 1,5 2 v f (v) i f (a) tj = 25c tj = tjmax-25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 30 60 90 120 150 180 210 0 30 60 90 120 150 th ( o c) p tot (w) 0 20 40 60 80 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 18 revision: 3
V23990-P768-A-PM figure 1 thermistor typical ntc characteristic a s a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/  copyright vincotech 19 revision: 3
V23990-P768-A-PM t j 150 c r gon 8  r goff 8  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of tdoff, teoff turn-on switching waveforms & definition of tdon, teon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,30  s t don = 0,10  s t eoff = 0,67  s t eon = 0,34  s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,12  s t r = 0,02  s switching definitions output inverter general conditions = = = i c 1% u ce 90% u ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 1 time (s) % t doff t eoff uce ic u ge ic 10% uge 10% t don u ce3% -50 0 50 100 150 200 250 300 2,9 3 3,1 3,2 3,3 3,4 3,5 time(s) % ic uce t eon uge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 time (s) % uce ic t f i c10% ic90% -50 0 50 100 150 200 250 300 3,05 3,1 3,15 3,2 3,25 time(s) % tr uce ic copyright vincotech 20 revision: 3
V23990-P768-A-PM figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 29,95 kw p on (100%) = 29,95 kw e off (100%) = 4,48 mj e on (100%) = 4,50 mj t eoff = 0,67 s t eon = 0,34 s figure 7 o utput inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 50 a i rrm (100%) = -82 a t rr = 0,31 s switching definitions output inverter ic 1% uge90% -20 0 20 40 60 80 100 120 -0,1 0,05 0,2 0,35 0,5 0,65 0,8 0,95 time (s) % p off e off t eoff u ce3% u ge10% -50 0 50 100 150 200 250 2,95 3,05 3,15 3,25 3,35 3,45 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -160 -120 -80 -40 0 40 80 120 3 3,1 3,2 3,3 3,4 3,5 3,6 time(s) % id ud fitted copyright vincotech 21 revision: 3
V23990-P768-A-PM figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 29,95 kw q rr (100%) = 9,95 c e rec (100%) = 3,98 mj t qint = 0,64 s t erec = 0,64 s switching definitions output inverter t qrr -200 -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 time(s) % id q rr -20 0 20 40 60 80 100 120 2,9 3,1 3,3 3,5 3,7 3,9 4,1 time(s) % p rec erec t erec copyright vincotech 22 revision: 3
V23990-P768-A-PM in datamatrix as in packaging barcode as without thermal paste 12mm housing p768-a p768-a pin x y pin x y 1 dc- 71,2 0 33 g 10,6 37,2 2 dc- 68,7 0 34 g 18,45 37,2 3 dc- 66,2 0 35 e 21,25 37,2 4 dc+ 63,7 0 36 v 24,05 37,2 5 dc+ 55,95 0 37 v 26,55 37,2 6 dc+ 53,45 0 38 v 29,05 37,2 7 dc+ 55,95 2,8 39 w 36,1 37,2 8 dc+ 53,45 2,8 40 w 38,6 37,2 9 dc+ 48,4 0 41 w 41,1 37,2 10 dc+ 45,9 0 42 e 43,9 37,2 11 e 38,9 0 43 g 46,7 37,2 12 dc- 36,1 0 44 l1 53,7 37,2 13 g 38,9 2,8 45 l1 56,2 37,2 14 dc- 36,1 2,8 46 l1 58,7 37,2 15 dc- 31,3 0 47 l2 71,2 37,2 16 e 28,5 0 48 l2 71,2 34,7 17 dc- 31,3 2,8 49 l2 71,2 32,2 18 g 28,5 2,8 50 l3 71,2 25,2 19 r2 19,3 0 51 l3 71,2 22,7 20 r1 19,3 2,8 52 l3 71,2 20,2 21 dc+ 12,3 0 53 brc 71,2 12,8 22 dc+ 9,8 0 54 brc 68,7 12,8 23 dc+ 12,3 2,8 55 brg 71,2 5,6 24 dc+ 9,8 2,8 56 bre 71,2 2,8 25 e 2,8 0 26 dc- 0 0 27 g 2,8 2,8 28 dc- 0 2,8 29 u 0 37,2 30 u 2,5 37,2 31 u 5 37,2 32 e 7,8 37,2 pin table V23990-P768-A-PM pinout ordering code & marking ordering code and marking - outline - pinout version outline ordering code copyright vincotech 23 revision: 3
V23990-P768-A-PM disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 24 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-P768-A-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X